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The lattice-Boltzmann method is a technique for simulating the time-dependent
motions of a simple fluid. Introducing rigid particles and imposing the correct bound-
ary conditions at the solid /fluid interface allows the many-body, time-dependent hy-
drodynamic interactions between particles to be computed. Rather than simulating
truly solid particles, a computationally convenient method for doing this uses hol-
low objects filled with the model fluid. We propose a simple modification of this
“internal fluid” method. For computational convenience our method keeps the fluid
inside the object. Its behaviour is modified, however, in such a way that it does not
perturb the dynamics of the particle. The equations of motion for the solid particles
are then modified in such a way that the microscopic conservation laws for mass and
momentum are satisfied. Comparing both the time-dependent (rotational and trans-
lational) motion of an isolated spherical particle and the viscosity of a concentrated
suspension of hard spheres against known results for solid particles, we examine
artifacts attributable to the “internal” fluid. Using our modified approach, we show
that these artifacts are no longer present and the behaviour of truly solid particles is
recovered. (©) 2000 Academic Press

Key Words:colloidal suspensions; computer simulations; hydrodynamic interac-
tions.

1. INTRODUCTION

The lattice-Boltzmann method is a simple scheme for simulating the dynamics
Newtonian fluids. By incorporating solid particles into the model fluid and imposing tf
correct boundary condition at the solid/fluid interface, one can use the method to study
loidal suspensions [1, 2]. Colloidal systems consist of particles that are large by molect
standards, dispersed in a solvent. Because of their ubiquity in both nature and in indu:
we would like to be able to predict theoretically, or calculate numerically, their propertie
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Unfortunately, the complex nature of the hydrodynamic interactions between the partic
makes this difficult. In the hybrid lattice-Boltzmann/solid-particle model, the hydrodynam
interactions governing the motion of the particles emerge quite naturally from the dyna
ics of the model fluid. As such, this model represents a useful numerical tool for study
suspensions. In this respect it has two particular strengths, both related to the fact tha
velocity fields in the fluid evolve with the correct time dependence, i.e., it avoids the appr
imation of pseudo steady states. First, the technique can be used to probe the time-depe
nature of the interactions between the particles [3, 4]. Second, it can be used to study
effects of inertia on suspensions [5]. Particulate flows for which the Reynolds numbe
not negligible can be simulated. Inertia is important if, for example, the particles are lal
(>>1 ) or the suspension is very far from equilibrium (which is commonly the case durir
processing).

The essentials of simulating colloidal suspension within the lattice-Boltzmann framewt
were derived by Ladd [1]. Here we will just recapitulate the most important points. Ti
lattice-Boltzmann method models a compressible fluid (in which the speed of sounc
finite). It is based on solving Boltzmann’s equation for particles constrained to move
a lattice (see, for example, Ref. [6]). The state of the fluid system is characterized by
single-particle distribution function; (r, t), describing the average number of particles at :
particular node of the lattice at a timet, with the discrete velocity; . The hydrodynamic
fields, mass density, momentum density, and the momentum flux densik¥ are simply
moments of this velocity distribution:

p=Zni, j=Zniq—, szniq—ci. 1)

A convenient lattice to use is the 4D face-centered hypecubic (FCHC) lattice. A tw
or three-dimensional model, with sufficient symmetry to ensure that the hydrodynar
transport coefficients are isotropic, can be obtained by projection onto the number of requ
dimensions. The time evolution of the distribution functianis described by the discretized
analogue of the Boltzmann equation [7],

ni(r+c,t+21) =ni(r,t)+ Air,t), 2

where A; is the change im; due to instantaneous “collisions” at the lattice nodes. Th
post-collision distributiom; + A; is propagated in the direction of the velocity veatarA
complete description of the collision process is given in [1]. The main effect of the collisi
operatorA; (r, t) is to (partially) relax the shear stress at every lattice site. The rate of stre
relaxation, or equivalently, the kinematic viscositycan be chosen almost freely.

The motion of the colloidal particle is determined by the force and torque exerted
it by the fluid. These are in turn a result of the stick boundary conditions applied at t
solid/fluid interface (that the fluid velocity and surface velocity are equal). For a static
ary boundary a simple bounce-back rule performed on boundary links enforces the s
boundary condition. Boundary links are links connecting lattice sites inside and outside
solid object, and obviously these come in pairs. We adopt a convention of labelling the |
which goes from inside to outside #sand its partner as-ib. For a moving boundary the
bounce-back rule is still applied but some of the particles moving in the same direct
as the solid object are allowed to “leak” through, matching the fluid velocity to the obje
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velocity at the boundary. Note that this requires there to be fluid both inside and outside
particle. For the lattice-Boltzmann model the modified bounce-back rule takes the form

N_ip(rp) = Nip('p) — 4No(P)Up - Cip

Nip(Mp) = N_ip(r'p) + 4No(p)Up - Cip,

3)

whereng(p) is the zero velocity distribution and, is thelocal boundary velocity. For
a colloidal particle with linear and angular velocitieswfandw, respectively, the local
boundary velocity is just

Up = Uo(t) + wo(t) x I'p, (4)

wherery, is the vector connecting the centre of mass of the object to the midpoint of t
boundary link. The forc& and torquerl exerted by the fluid on the particle are computed
from the change in momentum of the fluid as a result of the boundary collisions. The fo
at each individual boundary link, (ry), is given by

Fib(rp) = 2(Nip(rp) — N_ip(rp) — 4no(p)Up - Cip)Cip.- )

The total force and torque acting on the object are calculated by summing these link for
together with any external forceB,() or torques (), giving

F=> Fin(rp) + Fx
ib

T =) Finlrp) x o+ Tx.
ib

(6)

Having determined the force and torque acting on an object we are now in a positior
solve the equations of motion. There are several methods for doing this [1, 5, 8]. We prefer
“self-consistent” method described in Ref. [8]. It provides unconditional stability withot
the necessity of introducing, in addition to the time step used to integrate the Boltzm:e
equation, a second, smaller, time step over which to integrate the equations of motion. -
method involves rewriting Eq. (4) in terms of the new object velocities (indicated by
prime)

Ub=Ug+a)gXI’b (7)

and then substituting the modified expressionifganto the discretized equations of motion.
We can solve the resulting equations for theomponent oti; andw], giving

o Fxa /Mo + MoUgy (1) + 23 i (Nib(Fb) — N—ib (b)) Cibe
o Mo + 8No(0) it Ciba Ciba

o — Tya/lo + lowoa + 2> 15 (Nin(rp) — N_ip(rp)) (b X Cib)a
o lo + 8no(0)D i, ("b X Cib)a (b X Cib)e ’

(8)

(9)

Using this method, we find that the new fluid velocity at the boundary implies a force a
torque on the object, which, when incorporated into the equations of motion of the obje
imply the same new velocity for the particle—the rule is self-consistent.
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In this article we address the following point. Because the approach outlined ab
requires fluid both inside and outside the object it cannot be regardetbri as rep-
resenting a truly solid particle. It actually describes the dynamics of a hollow shell,
massm, and moment of inertidy, filled with fluid. Now, it may be that the behaviour
of these two systems is broadly similar, in which case the presence of the internal fl
is not problematic. Indeed, the method outlined above has been successfully applie
several studies. Ladd [2] investigated the influence of the internal fluid on the rotatio
dynamics of a single spherical particle and showed the following. For high-frequency
tational motion 2 > v/a?, whereS is the frequencyy is the kinematic viscosity, anal
is the particle radius) the internal fluid makes no contribution and the particle displays
haviour characteristic of a solid sphere with moment of inégti&or low-frequency motion
(2 « v/a) the internal fluid contributes essentially as a rigid body and the particle displa
behaviour characteristic of a solid particle with an effective moment of inégti@ompris-
ing the moment of inertia of the shell and the moment of inertia of internal fluid; i.e., for
sphere

|§ = |0+ano|rint_r0|2’ (10)

Fint

whereb is the number of discrete velocitids £ 24 for the FCHC lattice), is the position
vector for the centre of the sphere, angl are the position vectors of thi,; lattice
nodes inside the object. By analogy, for translational motion we would expect a particle
behave as if it had a mass, at high frequencies but an effective mags= m, + Ninbng

at low frequencies. This is not particularly satisfactory because the ratio of the mass |
colloidal particle to the mass of the equivalent volume of flgid js an important parameter
determining the dynamics of a colloidal particle. It influences the inertial time scale for t
colloidal particle (the characteristic time it takes the particle to respond to changes in
velocity of the fluid surrounding it). If one is interested in the effects of inertia it wouls
be preferable to get this right. Furthermore, the parametetoes not vary much in real
suspensions. It always takes a value close to unity, otherwise the particles would separat
under the effects of gravity. If we try to simulate a neutrally buoyant particie< 1) using
the above approach, at best we can choose between gaftiag0 and having the correct
low-frequency behaviour or setting, = Nirtbng and having the correct high-frequency
behaviour.

Given the above, it is not surprising that attempts have been made to develop a sct
for simulating colloidal particles that does not involve internal fluid [5, 9, 10]. To ou
knowledge, none of these methods are completely satisfactory in that they do not cons
both mass and momentum. There is also the question of whether we actually want to
rid of the internal fluid or keep it and get rid of its contribution to the effective particle ma:
and moment of inertia. Dispensing with it altogether actually creates a new problem. T
is, as the particle moves over the lattice some nodes that were external become interna
vice versa. If the nodes inside the particle are undefined (i.e., there is no internal fluid)
then face problems. In particular, how do we define the state of an “exposed” node, i.e
node that was inside the particle but suddenly becomes part of the system [5]? Taking
into consideration, the second of the two options, keeping the internal fluid but mitigati
its effects, is probably preferable as it limits these problems. In the following sections:
describe and test such a method.
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2. REMOVING THE EFFECTS OF THE INTERNAL FLUID

The method we propose to minimize the effects of the internal fluid and the reason
behind it proceed along the following lines. Suppose the internal fluid is at rest. In tf
case it is straightforward to see that, if we use the original method outlined above,
internal fluid summed over the entire object no longer contributes a variable net force
torque. Consequently it does not enter into the equations of motion. Making use of t
fact, we therefore adopt a two-stage process. The first stage is to impose the condition
the internal fluid remains at rest. To this end, at the start of each time step we reset all
distribution functions inside a partickg (rin, t) to values characteristics of a fluid at rest,
ie.,

Zrim Zi ni(r, t)

b Nint (11)

N (Fine. ) =
The value of this constant ensures conservation of mass (all mass inside the partic
equally redistributed, thus dissipating any sound propagation within the particle). This s
does not conserve linear or angular momentum. However, if the changes of linear
angular momentum, resulting from step 1, are interpreted as inducing an external force
torque on the particle,

FX = — Z Z(rh (rint, t)/ - ni (rint, t))C|
Fint G (12)
TX = — Z Z(rh (rint, t)/ — N (rint, t))(r - rO) X G,

then, when these forces and torques are substituted into the equations of motion (Eqs
and (9)) and the state of the system is updated fremt + At in the usual manner, both
linear and angular momentum are conserved over the full time step. At the end of t
second step, the internal fluid adjacent to the shell of the particle will generally not
at rest (because of the intervening boundary collisions). However, we will now apply t
first operation again. This can therefore be interpreted as transferring the momentum
would, using the original method, have been transferred into the internal fluid back to
shell—where it belongs. In essence, we preserve Ladd’s original method for imposing
stick boundary condition but apply a small correction preventing momentum transfer
the interior fluid. The internal fluid thus acquires no linear or angular momentum and dc
not contribute to the equations of motion.

If we consider a colloidal particle that is moving from one lattice site to another, tt
method we outlined above, because it keeps the internal fluid, possibly provides a conver
point at which to perform the move. This point is probably prior to the application of th
first operation. The reason for this is the following. The normal bounce-back rule (st
two) applies the stick boundary condition to both the exterior and interior of the solid/flu
interface. Thus, at this point in the algorithm, nodes adjacent to the boundary, both ins
and outside, will be set to the correct velocity. Therefore, if a particle moves and a nc
originally inside the object is now outside, it will, to a good approximation, be in the corre
state. Using the method outlined above we can deal with a particle moving over the lat
by nodes that are already identified. This is in contrast to approaches which remove
internal fluid completely [5].
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3. TESTS OF THE METHOD

As atest of the method outlined above, we consider three different dynamic propertie
colloidal systems. Our aim is to apply the original method, establish the role of the inter
fluid, and then apply the new method for comparative purposes. Specifically we have ca
lated the following. First, we have the frequency-dependent rotational friction coefficient
an isolated colloidal sphere. This is the same problem considered by Ladd [2]. Second
calculate the single-particle velocity autocorrelation function for a single colloidal sphe
In contrast to rotation, sound propagation (related to mass conservation) influences
quantity. Finally, we consider a transport property, the viscosity of a concentrated susy
sion of colloidal hard spheres. For the first two cases there is an analytic result with wt
to compare. For the third we can compare with accurate numerical values, calculated u
multipole methods [12], or theory, valid at low to intermediate volume fractions. In all tf
simulations we report here, the shell mass and moment of inexgiar{d|,) are setto values
characteristic of a solid sphere with the same density as the density of the fluid. Thus, if
effects of the internal fluid can be neglected, we are simulating neutrally buoyant partic

3.1. The Frequency-Dependent Rotational Friction Coefficient

If we consider one Fourier component of the velocity of a particle executing some ar
trary time-dependent rotational motion, i.@(t) = Q¢ cog2t), then the fluid will exert
a frequency-dependent torqlie(2) on the particle with the general form

T1(2) = Qon(€2), (13)

wherey;(2) is a frequency-dependent rotational friction coefficient. The time-depende
motion of a single spherical particle can be analyzed theoretically in considerable detail.
assuming that the dynamics of the fluid can be described by the Navier—Stokes equa
for an incompressible fluid (in the limit of zero Reynolds number) and that a stick bounds
condition applies at the solid/fluid interface, this problem can be solved [11] analytical
For a particle of radiua suspended in a fluid of viscosityand density the result is

i Q*
QD =—ypll-—— ), 14
w@ = -n(1- 35+ o) 14)
wherev = 5/p is the kinematic viscosityR* = Qa?/v, andy,(0) (=8rnad) is the zero-
frequency rotational friction coefficient. If the spherical particle is not solid but filled witl
fluid, there is an additional contribution to the friction coefficient coming from the intern:
fluid (). At low values of the reduced frequen&y* < 1, this contribution takes the
form

int _ Vr(o) [ &*
Q) = T <| 35). (15)

The first term represents the inertial contribution of the internal fluid acting as a rigid bo
Numerically, itis straightforward to calculate($2). We simply impose a sinusoidal velocity

on the particle and calculate the in-phase and out-of-phase components of the torque ex
on the particle by the fluid. These are conveniently expressed in terms of a magnitude
phase shift. We concentrate here on low frequencies, where the effect of the internal flu
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FIG.1. Phase lag (inradians) between animposed sinusoidal rotation with freq@emzi/the torque exerted
on a colloidal sphere. The lag is plotted as a function of dimensionless freqneyQa?/v.

discernible but numerical errors (due to the discretization in time) remain small [2]. At lo
frequencies the effect of the internal fluid on the magnitude is slight. The dominant eff
is an additional contribution to the phase shift (Eq. (15)). The results we obtained, usin
sphere of radius.8 lattice spacings, are plotted in Fig. 1, along with the analytical resu
for a solid sphere (Eqg. (14)) and the asymptotic result for a fluid-filled sphere (for which t
rotational friction coefficient is simply the sum of the internal and external contributions
The simulations were carried out using both the original method described by Ladd [1] (*w
internal fluid”) and the modified method outlined above (denoted “without internal fluid”
As Fig. 1 shows, for the simulations using the original algorithm the inertial contribution
low frequencies is clearly visible. Just as Ladd concluded [2], at low frequencies the part
behaves like a solid sphere with a moment of inertia equal to that of the shell plus tha
the equivalent volume of fluid. In contrast, using the modified method we described abc
there is no additional inertial contribution. The data follow the theoretical curve for a sol
object with a moment of inertia simply equal to the assigned moment of ingrtighus,
from the point of view of rotation, the method we outlined above succeeds in its object
of removing the low-frequency effects of the internal fluid.

3.2. The Single-Particle Velocity Autocorrelation Function

We now turn to translational motion, where, this time, we will consider a more physic
guantity, the velocity autocorrelation function (VACF). In a suspension a colloidal partic
experiences rapid collisions with the solvent molecule, giving it a fluctuating thermal v
locity. The VACF,C(t), is defined as an average over these fluctuatits = (v(O)v(t)),
wherew(t) is one component of the instantaneous thermal velocity. It characterizes |
decay of velocity fluctuations. In our lattice-Boltzmann model we have no spontanec
fluctuations. However, if we impose a velocity fluctuation then, according to Onsage
regression hypothesis, the subsequent decay will be identical to the average decay in ¢



SIMULATING SOLID COLLOIDAL PARTICLES 55

system. To analyze the dissipation of an imposed velocity fluctuation, in the same v
that we defined a rotational friction coefficient above, we define a translational frequen
dependent friction coefficient(£2). The translational friction coefficient characterizes the
force acting on a particle undergoing simple periodic translational motion with freq@ency
Since the function;(2) connects the velocity to its derivative, it can be used to define ¢
equation of motion for the particle. In terms of Fourier components, the velocity of ti
particle satisfies the equation

o) = Fr®/mg

—1Q2 + 1(2)/mg

whereF, () is the Fourier transform of any time-dependent external forces acting on t
particle. If we now consider a particle impulsively accelerated to a velogigyt = 0, i.e.,
Fy () = mgug, then

v(Q) 1
vo =i+ n(Q)/me’

(17)
Following from the discussion above, this can be related to the Fourier transform of
“true” VACF,

Q) CQ)  mC(Q)
vo Ct=0 kT ’

(18)

whereT is the temperature ang is Boltzmann’s constant. We have also used the equipa
tition condition to identifyC(t = 0) = kg T/m,. So, if we knowy;(2) then, with the aid of
Eq. (17), Eq. (18), and an inverse transformation, we can calculate the velocity autocorr
tion function. For a single spherical partighg2) can be calculated analytically. Assuming
that the motion of the fluid is described by the compressible Navier—Stokes equations
that a stick boundary condition applies at the solid/fluid interface, this calculation yields [
14]

o2 1+a+(1/9%B — (1/9)8%A

Q) = 211(0 19
7n(€2) = 2p( 52A+ 2a7B ) (19)
with
A=ltat e
= o+ g
1
B=1+,3+§,3
(20)
a=—ia\/Q/v
iaQ
B =

V(€ —iQ((4/3)v + vg))

Here 11(0) = 6 na is the zero-frequency translational friction coefficieng, = ng/p,

whereng is the bulk viscosity, and is the speed of sound through the fluid. The lattel
two quantities are associated with, respectively, the speed and the rate of damping o
sound wave generated by a moving particle. Comparisons have been made between th
ical and numerical values, calculated using the lattice-Boltzmann model [2], for the VA(
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of a single spherical colloidal particle. However, the comparison was made against the
derived using the additional assumption that the fluid is incompressible (the compress
result, Eq. (19), reduces to the incompressible result in the Bmit 0, i.e., the speed of
sound going to infinity). The lattice-Boltzmann approach simulates a compressible syst
the sound propagates through the model fluid at a finite speed. Although the effect:
compressibility are limited to high frequencie&s,~ c/a [14], a comparison with the full
compressible result, notably at short times, is more appropriate.

Numerically, we have calculated the normalized velocity autocorrelation function alo
the lines outlined above (Eq. (18)). Starting with a fluid at rest and a spherical particle w
a velocityvg, we allowed the system to evolve in time and, from the subsequent velocity
the particley(t), we calculated the normalized velocity autocorrelation functi@n/vo.

We performed the same procedure for particle radii.bfahd 45 lattice sites using a cubic
system with periodic boundary conditions applied at the faces of the simulation box.
only calculated the VACF up until times less than the time it takes a sound wave to p
between the central particle and its nearest periodic image. Thus, the results are free
any finite size effects. In Fig. 2 we have plotted the normalized velocity autocorrelati
function as a function of the viscous timg = tv/a? calculated using the original method
and using the modified method outlined above. For the results plotted in Fig. 2 the rac
of the solid particle was .3 lattice sites. Also plotted in Fig. 2 is the theoretical result
for a compressible fluid, calculated by substituting appropriate values for the transg
coefficients into Eq. (19) and transforming the frequency-dependent VACF into the tir
domain. In lattice units, such that the time step, density of the fluid, and lattice spacing
all unity, the values of the transport coefficients were 1/6,c = 1/+/2, andvg = 1/30.

In Fig. 3 we show the same plot for data obtained using the identical fluid, but this time us
a sphere of radius 4.5 lattice sites. Examining Fig. 2 we see that the VACF calculated v

1.0 = _
—— Theory (Bedeaux and Mazur)
x Simulation (without internal fluid)
08 | o Simulation (with internal fluid)

FIG. 2. The normalized velocity autocorrelation function for a single colloidal sphere as a function of d
mensionless time, = tv/a2. 7 is the time, measured in the same reduced units, it takes a sound wave to trave
particle diameter. The simulation used a particle of radiGdditice sites.
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FIG. 3. The normalized velocity autocorrelation function for a single colloidal sphere as a function of ¢
mensionless time, = tv/a?. t; is the time, measured in the same reduced units, it takes a sound wave to trave
particle diameter. The simulation used a particle of radiGdattice sites.

the effects of the internal fluid removed (“without internal fluid”) follows the theoretica
curve and more closely than does the curve calculated using the original method. V
the internal fluid present, the VACF lies initially below the theoretical curve and the
subsequently above it. It displays weak oscillations about the true result. This is alrr
certainly an effect of sound propagating back and forth inside the object. To support
hypothesis, the time it takes a sound wave to travel one particle diameter is also show
the plot s). As we can see, it corresponds to an artificial maximum in the VACF. Turnin
to the plot for the sphere of radiusattice units (Fig. 3), we see that the oscillations abou
the correct result, for the simulation with internal fluid, are now, compared to the radius .
case, more pronounced. Again the first artificial maximum occurs at a time commensu
with a sound wave travelling one diameter through the flaigl (This is consistent with

our remark that these oscillations are an artifact of sound propagation through the inte
fluid. Given that we are using a bigger representation of the sphere we should get a r
accurate answer. The spatial resolution of the simulation has been increased. Howeve
artificial oscillations we observe are more pronounced. At short times we are further a
from the true result. The reason for this is that, by moving from a sphere of radius 2.5 to
we have, in dimensionless terms decreased the compressibility. Sound waves are dissi
proportionately more slowly, making the problem worse. In contrast, for the simulati
where we have attempted to remove the effects of the internal fluid, increasing the ra
of the sphere gives a result nearer to the theoretical curve. This is the behaviour we wi
expect for a truly solid particle. On the whole, the agreement between the theoretical re
and the simulations with the effects of the internal fluid removed is very good, particula
given the extremely rapid initial decay of the function relative to one time step. At long
times, after the oscillations induced by the internal fluid have died away, Figs. 2 an
suggest that either method is adequate. However, on closer examination we find that
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FIG. 4. Log-log plot of the normalized velocity autocorrelation function at longer dimensionless time
7, = tv/a?. The simulation used a particle of radiu$ 2attice sites.

is not true. In Fig. 4 we have plotted, in log—log form, the decay of the VACF at longe
times for a particle of radius 2.5. It is clear that, with the internal fluid present, the resu
follow the theoretical curve for a particle with mass ratio= 2. Again, as with rotation,
the internal fluid is contributing, at low frequencies (or in this case long times), a rigid-bo
inertial term to the equations of motion. In contrast, if we use the approach outlined abc
the results follow the (correct) curve for a neutrally buoyant particle. Again our meth
seems to successfully reproduce the dynamics of a solid particle.

3.3. The Viscosity of a Concentrated Suspension

Whereas for generalized rotational and translational motion, considered above, the ir
nal fluid causes a relatively minor perturbation of the dynamics of the particle, we now tu
to what may be a more serious problem: the influence this may, in turn, have on the trans
coefficients. Specifically, we consider the viscosity of a concentrated suspension. There
various ways to calculate this quantity. Probably the most convenient is by studying the
cay of an initial transverse sinusoidal velocity perturbation f45]0) = sin(kr;y), where
vix (0) is thex component of the velocity of particieandr;y is they component of its
position vector. If we calculate the subsequent veloaityt), of the N particles in the
system, then according to classic hydrodynamics [16] we have

1/ 1 [
C) = <§=; vix<0>vix<t)> =N (; v?x(0>> exp(—k?v,t), (21)
where the angular brackets denote an average over all possible configurationd\of th
particles and, is the kinematic viscosity of the suspension. We only expect Eq. (21) 1
apply on length scales long compared to the length scale defined by the particles themse
i.e.,k « 2r/a. The decay of this correlation function has been reported elsewhere [1
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here it is sufficient to note that the sméllasymptotic behaviour is observed, to a very
good approximation, as long &s < 0.1. The point is that this method gives us a mean:
of determining the kinematic viscosity of the suspension. This is related to the suspen:
viscosity,n4, by ny = pvg, as long as we know the density. But what should we take fc
the density? If the particles are neutrally buoyant the density of a suspension, regardle
the volume fraction, will be equal to the density of the solvent, so that

Yo _ o (22)
v n

If, however, we set the shell mass so that the particles are nominally neutrally buoyant bu
internal fluid contributes an equivalent mass (that is, assuming that it is the low-freque
particle mass that is relevant) then the density of the suspepgiat volume fractionp,

will effectively differ from the solvent density a8, = (1 + ¢)p. This being the case, we
then expect

ne _ A+ oy 23)
Vv

Using the methodology outlined above (described in more detail in Ref. [15]), we ha
calculated the kinematic viscosity of a suspension of hard spheres as a function of voli
fraction. In Fig. 5 we have plotted, /v as a function of volume fraction for nominally

neutrally buoyant particles, simulated using Ladd’s original method (“with internal fluid’
and using the modified method we outlined above (“without internal fluid”). Also plotted |
Fig. 5 are theoretical predictions (based on an expansion up to second order in the vol

6.00 : : :
o Simulation (without internal fluid) *
+ Numerical (p, = p)
5.00 r Theory (p, = p) I
4 Simulation (with internal fluid)
X Numerical (p, = (1+¢)p )
400 L 7777 Theory (p,=(1+0)p) |
X
2
> A
3.00 - x 7 |
2.00 .
=X
1.00 . L . ' '
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o

FIG.5. The kinematic viscosity of a suspension of hard sphegesiormalized by the solvent viscosityand
plotted as a function of volume fractign Data denoted “Numerical” refer to values derived from shear viscositie
calculated by Ladd [12] and data denoted “Theory” refers to values derived from shear viscosities predicte!
the theory of Beenakker and Mazur [17), is the density we used to calculate the kinematic viscosity from the
shear viscosity angd is the solvent density.
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fraction [17]) for the kinematic viscosity of a suspension of neutrally buoyant particles a
accurate numerical values calculated by Ladd [12]. As we see from the figure, wher
data calculated using the modified method agree with theoretical and numerical values
a suspension of neutrally buoyant particles, data calculated using the original methoc
not. The data clearly follow the curvg /v = 5,/(1+ ¢)n. The internal fluid is therefore
contributing to the effective density of the suspension (Eq. (23)) and the kinematic visco:s
is increasingly underestimated with increasing volume fraction.

4. DISCUSSION

We have described a method for simulating truly solid colloidal particles within th
lattice-Boltzmann framework. Unlike other methods that have been proposed, our met
strictly adheres to the microscopic conservation laws for mass and momentum. For con
tational convenience our approach keeps the internal fluid inherent in Ladd’s original mo
However, by transferring linear and angular momentum that would otherwise have b
transported to the internal fluid back to the shell of the particle, we recover the dynam
of a truly solid particle. We demonstrated this by showing that the correct time-depend
rotational and translation dynamics of a solid particle were recovered. To our knowled
the theoretical result for the VACF of a colloidal particle suspended in a compressil
fluid has not been tested before. Thus, our simulations could equally well be regarded
test of the theory rather than vice versa. Either way, the agreement was excellent. Fol
simulations where the internal fluid reacted passively, we reached the same conclusic
Ladd. At low frequencies, or long times, the internal fluid contributes an additional rigi
body inertia to the motion of the particles. By considering the viscosity of a concentrat
suspension, we showed that this additional inertia leads to a suspension with an effec
density greater than one would expect for a suspension of colloidal particles with the sé
density of the fluid. This means that the kinematic viscosity and viscosity do not displ
the same dependence on volume fraction. Using our modified method, the correct eqL
lence was recovered.
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