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The lattice-Boltzmann method is a technique for simulating the time-dependent
motions of a simple fluid. Introducing rigid particles and imposing the correct bound-
ary conditions at the solid /fluid interface allows the many-body, time-dependent hy-
drodynamic interactions between particles to be computed. Rather than simulating
truly solid particles, a computationally convenient method for doing this uses hol-
low objects filled with the model fluid. We propose a simple modification of this
“internal fluid” method. For computational convenience our method keeps the fluid
inside the object. Its behaviour is modified, however, in such a way that it does not
perturb the dynamics of the particle. The equations of motion for the solid particles
are then modified in such a way that the microscopic conservation laws for mass and
momentum are satisfied. Comparing both the time-dependent (rotational and trans-
lational) motion of an isolated spherical particle and the viscosity of a concentrated
suspension of hard spheres against known results for solid particles, we examine
artifacts attributable to the “internal” fluid. Using our modified approach, we show
that these artifacts are no longer present and the behaviour of truly solid particles is
recovered. c© 2000 Academic Press

Key Words:colloidal suspensions; computer simulations; hydrodynamic interac-
tions.

1. INTRODUCTION

The lattice-Boltzmann method is a simple scheme for simulating the dynamics of
Newtonian fluids. By incorporating solid particles into the model fluid and imposing the
correct boundary condition at the solid/fluid interface, one can use the method to study col-
loidal suspensions [1, 2]. Colloidal systems consist of particles that are large by molecular
standards, dispersed in a solvent. Because of their ubiquity in both nature and in industry,
we would like to be able to predict theoretically, or calculate numerically, their properties.
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Unfortunately, the complex nature of the hydrodynamic interactions between the particles
makes this difficult. In the hybrid lattice-Boltzmann/solid-particle model, the hydrodynamic
interactions governing the motion of the particles emerge quite naturally from the dynam-
ics of the model fluid. As such, this model represents a useful numerical tool for studying
suspensions. In this respect it has two particular strengths, both related to the fact that the
velocity fields in the fluid evolve with the correct time dependence, i.e., it avoids the approx-
imation of pseudo steady states. First, the technique can be used to probe the time-dependent
nature of the interactions between the particles [3, 4]. Second, it can be used to study the
effects of inertia on suspensions [5]. Particulate flows for which the Reynolds number is
not negligible can be simulated. Inertia is important if, for example, the particles are large
(À1µ) or the suspension is very far from equilibrium (which is commonly the case during
processing).

The essentials of simulating colloidal suspension within the lattice-Boltzmann framework
were derived by Ladd [1]. Here we will just recapitulate the most important points. The
lattice-Boltzmann method models a compressible fluid (in which the speed of sound is
finite). It is based on solving Boltzmann’s equation for particles constrained to move on
a lattice (see, for example, Ref. [6]). The state of the fluid system is characterized by the
single-particle distribution functionni (r , t), describing the average number of particles at a
particular node of the latticer , at a timet , with the discrete velocityci . The hydrodynamic
fields, mass densityρ, momentum densityj , and the momentum flux densityΠ are simply
moments of this velocity distribution:

ρ =
∑

i

ni , j =
∑

i

ni ci , Π =
∑

i

ni ci ci . (1)

A convenient lattice to use is the 4D face-centered hypecubic (FCHC) lattice. A two-
or three-dimensional model, with sufficient symmetry to ensure that the hydrodynamic
transport coefficients are isotropic, can be obtained by projection onto the number of required
dimensions. The time evolution of the distribution functionsni is described by the discretized
analogue of the Boltzmann equation [7],

ni (r + ci , t + 1) = ni (r , t)+1i (r , t), (2)

where1i is the change inni due to instantaneous “collisions” at the lattice nodes. The
post-collision distributionni +1i is propagated in the direction of the velocity vectorci . A
complete description of the collision process is given in [1]. The main effect of the collision
operator1i (r , t) is to (partially) relax the shear stress at every lattice site. The rate of stress
relaxation, or equivalently, the kinematic viscosityν, can be chosen almost freely.

The motion of the colloidal particle is determined by the force and torque exerted on
it by the fluid. These are in turn a result of the stick boundary conditions applied at the
solid/fluid interface (that the fluid velocity and surface velocity are equal). For a station-
ary boundary a simple bounce-back rule performed on boundary links enforces the stick
boundary condition. Boundary links are links connecting lattice sites inside and outside the
solid object, and obviously these come in pairs. We adopt a convention of labelling the link
which goes from inside to outside asib and its partner as−ib. For a moving boundary the
bounce-back rule is still applied but some of the particles moving in the same direction
as the solid object are allowed to “leak” through, matching the fluid velocity to the object
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velocity at the boundary. Note that this requires there to be fluid both inside and outside the
particle. For the lattice-Boltzmann model the modified bounce-back rule takes the form [1]

n−ib(rb) = nib(rb)− 4n0(ρ)ub · cib
(3)

nib(rb) = n−ib(rb)+ 4n0(ρ)ub · cib,

wheren0(ρ) is the zero velocity distribution andub is the local boundary velocity. For
a colloidal particle with linear and angular velocities ofuo andωo respectively, the local
boundary velocity is just

ub = uo(t)+ ωo(t)× rb, (4)

whererb is the vector connecting the centre of mass of the object to the midpoint of the
boundary link. The forceF and torqueT exerted by the fluid on the particle are computed
from the change in momentum of the fluid as a result of the boundary collisions. The force
at each individual boundary link,Fib(rb), is given by

Fib(rb) = 2(nib(rb)− n−ib(rb)− 4n0(ρ)ub · cib)cib. (5)

The total force and torque acting on the object are calculated by summing these link forces,
together with any external forces (Fx) or torques (Tx), giving

F =
∑

ib

Fib(rb)+ Fx

(6)
T =

∑
ib

Fib(rb)× rb + Tx.

Having determined the force and torque acting on an object we are now in a position to
solve the equations of motion. There are several methods for doing this [1, 5, 8]. We prefer the
“self-consistent” method described in Ref. [8]. It provides unconditional stability without
the necessity of introducing, in addition to the time step used to integrate the Boltzmann
equation, a second, smaller, time step over which to integrate the equations of motion. This
method involves rewriting Eq. (4) in terms of the new object velocities (indicated by a
prime)

ub = u′o + ω′o × rb (7)

and then substituting the modified expression forub into the discretized equations of motion.
We can solve the resulting equations for theα component ofu′o andω′o, giving

u′oα =
Fxα/mo +mouoα(t)+ 2

∑
ib(nib(rb)− n−ib(rb))cibα

mo + 8n0(ρ)
∑

ibcibαcibα
(8)

ω′oα =
Txα/Io + Ioωoα + 2

∑
ib(nib(rb)− n−ib(rb))(rb × cib)α

Io + 8n0(ρ)
∑

ib(rb × cib)α(rb × cib)α
. (9)

Using this method, we find that the new fluid velocity at the boundary implies a force and
torque on the object, which, when incorporated into the equations of motion of the object,
imply the same new velocity for the particle—the rule is self-consistent.
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In this article we address the following point. Because the approach outlined above
requires fluid both inside and outside the object it cannot be regardeda priori as rep-
resenting a truly solid particle. It actually describes the dynamics of a hollow shell, of
massmo and moment of inertiaI0, filled with fluid. Now, it may be that the behaviour
of these two systems is broadly similar, in which case the presence of the internal fluid
is not problematic. Indeed, the method outlined above has been successfully applied in
several studies. Ladd [2] investigated the influence of the internal fluid on the rotational
dynamics of a single spherical particle and showed the following. For high-frequency ro-
tational motion (ÄÀ ν/a2, whereÄ is the frequency,ν is the kinematic viscosity, anda
is the particle radius) the internal fluid makes no contribution and the particle displays be-
haviour characteristic of a solid sphere with moment of inertiaIo. For low-frequency motion
(Ä¿ ν/a) the internal fluid contributes essentially as a rigid body and the particle displays
behaviour characteristic of a solid particle with an effective moment of inertia,I ∗o , compris-
ing the moment of inertia of the shell and the moment of inertia of internal fluid; i.e., for a
sphere

I ∗o = Io +
∑
r int

bno|r int − r0|2, (10)

whereb is the number of discrete velocities (b = 24 for the FCHC lattice),r0 is the position
vector for the centre of the sphere, andr int are the position vectors of theNint lattice
nodes inside the object. By analogy, for translational motion we would expect a particle to
behave as if it had a massmo at high frequencies but an effective massm∗o = mo + Nintbn0

at low frequencies. This is not particularly satisfactory because the ratio of the mass of a
colloidal particle to the mass of the equivalent volume of fluid,ρ∗, is an important parameter
determining the dynamics of a colloidal particle. It influences the inertial time scale for the
colloidal particle (the characteristic time it takes the particle to respond to changes in the
velocity of the fluid surrounding it). If one is interested in the effects of inertia it would
be preferable to get this right. Furthermore, the parameterρ∗ does not vary much in real
suspensions. It always takes a value close to unity, otherwise the particles would separate out
under the effects of gravity. If we try to simulate a neutrally buoyant particle (ρ∗ = 1) using
the above approach, at best we can choose between settingmo = 0 and having the correct
low-frequency behaviour or settingmo = Nintbn0 and having the correct high-frequency
behaviour.

Given the above, it is not surprising that attempts have been made to develop a scheme
for simulating colloidal particles that does not involve internal fluid [5, 9, 10]. To our
knowledge, none of these methods are completely satisfactory in that they do not conserve
both mass and momentum. There is also the question of whether we actually want to get
rid of the internal fluid or keep it and get rid of its contribution to the effective particle mass
and moment of inertia. Dispensing with it altogether actually creates a new problem. That
is, as the particle moves over the lattice some nodes that were external become internal and
vice versa. If the nodes inside the particle are undefined (i.e., there is no internal fluid) we
then face problems. In particular, how do we define the state of an “exposed” node, i.e., a
node that was inside the particle but suddenly becomes part of the system [5]? Taking this
into consideration, the second of the two options, keeping the internal fluid but mitigating
its effects, is probably preferable as it limits these problems. In the following sections we
describe and test such a method.
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2. REMOVING THE EFFECTS OF THE INTERNAL FLUID

The method we propose to minimize the effects of the internal fluid and the reasoning
behind it proceed along the following lines. Suppose the internal fluid is at rest. In this
case it is straightforward to see that, if we use the original method outlined above, the
internal fluid summed over the entire object no longer contributes a variable net force or
torque. Consequently it does not enter into the equations of motion. Making use of this
fact, we therefore adopt a two-stage process. The first stage is to impose the condition that
the internal fluid remains at rest. To this end, at the start of each time step we reset all the
distribution functions inside a particleni (r int, t) to values characteristics of a fluid at rest,
i.e.,

ni (r int, t)
′ =

∑
r int

∑
i ni (r , t)

bNint
. (11)

The value of this constant ensures conservation of mass (all mass inside the particle is
equally redistributed, thus dissipating any sound propagation within the particle). This step
does not conserve linear or angular momentum. However, if the changes of linear and
angular momentum, resulting from step 1, are interpreted as inducing an external force and
torque on the particle,

Fx = −
∑
r int

∑
ci

(ni (r int, t)
′ − ni (r int, t))ci

(12)
Tx = −

∑
r int

∑
ci

(ni (r int, t)
′ − ni (r int, t))(r − ro)× ci ,

then, when these forces and torques are substituted into the equations of motion (Eqs. (8)
and (9)) and the state of the system is updated fromt → t +1t in the usual manner, both
linear and angular momentum are conserved over the full time step. At the end of this
second step, the internal fluid adjacent to the shell of the particle will generally not be
at rest (because of the intervening boundary collisions). However, we will now apply the
first operation again. This can therefore be interpreted as transferring the momentum that
would, using the original method, have been transferred into the internal fluid back to the
shell—where it belongs. In essence, we preserve Ladd’s original method for imposing the
stick boundary condition but apply a small correction preventing momentum transfer to
the interior fluid. The internal fluid thus acquires no linear or angular momentum and does
not contribute to the equations of motion.

If we consider a colloidal particle that is moving from one lattice site to another, the
method we outlined above, because it keeps the internal fluid, possibly provides a convenient
point at which to perform the move. This point is probably prior to the application of the
first operation. The reason for this is the following. The normal bounce-back rule (step
two) applies the stick boundary condition to both the exterior and interior of the solid/fluid
interface. Thus, at this point in the algorithm, nodes adjacent to the boundary, both inside
and outside, will be set to the correct velocity. Therefore, if a particle moves and a node
originally inside the object is now outside, it will, to a good approximation, be in the correct
state. Using the method outlined above we can deal with a particle moving over the lattice
by nodes that are already identified. This is in contrast to approaches which remove the
internal fluid completely [5].
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3. TESTS OF THE METHOD

As a test of the method outlined above, we consider three different dynamic properties of
colloidal systems. Our aim is to apply the original method, establish the role of the internal
fluid, and then apply the new method for comparative purposes. Specifically we have calcu-
lated the following. First, we have the frequency-dependent rotational friction coefficient of
an isolated colloidal sphere. This is the same problem considered by Ladd [2]. Second, we
calculate the single-particle velocity autocorrelation function for a single colloidal sphere.
In contrast to rotation, sound propagation (related to mass conservation) influences this
quantity. Finally, we consider a transport property, the viscosity of a concentrated suspen-
sion of colloidal hard spheres. For the first two cases there is an analytic result with which
to compare. For the third we can compare with accurate numerical values, calculated using
multipole methods [12], or theory, valid at low to intermediate volume fractions. In all the
simulations we report here, the shell mass and moment of inertia (mo andIo) are set to values
characteristic of a solid sphere with the same density as the density of the fluid. Thus, if the
effects of the internal fluid can be neglected, we are simulating neutrally buoyant particles.

3.1. The Frequency-Dependent Rotational Friction Coefficient

If we consider one Fourier component of the velocity of a particle executing some arbi-
trary time-dependent rotational motion, i.e.,ωo(t) = Ä0 cos(Ät), then the fluid will exert
a frequency-dependent torqueTf (Ä) on the particle with the general form

Tf (Ä) = Ä0γr(Ä), (13)

whereγr(Ä) is a frequency-dependent rotational friction coefficient. The time-dependent
motion of a single spherical particle can be analyzed theoretically in considerable detail. By
assuming that the dynamics of the fluid can be described by the Navier–Stokes equations
for an incompressible fluid (in the limit of zero Reynolds number) and that a stick boundary
condition applies at the solid/fluid interface, this problem can be solved [11] analytically.
For a particle of radiusa suspended in a fluid of viscosityη and densityρ the result is

γr(Ä) = −γ0

(
1− iÄ∗

3(1+√−iÄ∗)

)
, (14)

whereν = η/ρ is the kinematic viscosity,Ä∗ = Äa2/ν, andγr(0) (=8πηa3) is the zero-
frequency rotational friction coefficient. If the spherical particle is not solid but filled with
fluid, there is an additional contribution to the friction coefficient coming from the internal
fluid γ int

R (Ä). At low values of the reduced frequency,Ä∗ ¿ 1, this contribution takes the
form

γ int
R (Ä) = γr(0)

15
Ä∗
(

i − Ä
∗

35

)
. (15)

The first term represents the inertial contribution of the internal fluid acting as a rigid body.
Numerically, it is straightforward to calculateγR(Ä). We simply impose a sinusoidal velocity
on the particle and calculate the in-phase and out-of-phase components of the torque exerted
on the particle by the fluid. These are conveniently expressed in terms of a magnitude and
phase shift. We concentrate here on low frequencies, where the effect of the internal fluid is
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FIG. 1. Phase lag (in radians) between an imposed sinusoidal rotation with frequencyÄ and the torque exerted
on a colloidal sphere. The lag is plotted as a function of dimensionless frequencyÄ∗ = Äa2/ν.

discernible but numerical errors (due to the discretization in time) remain small [2]. At low
frequencies the effect of the internal fluid on the magnitude is slight. The dominant effect
is an additional contribution to the phase shift (Eq. (15)). The results we obtained, using a
sphere of radius 4.5 lattice spacings, are plotted in Fig. 1, along with the analytical result
for a solid sphere (Eq. (14)) and the asymptotic result for a fluid-filled sphere (for which the
rotational friction coefficient is simply the sum of the internal and external contributions).
The simulations were carried out using both the original method described by Ladd [1] (“with
internal fluid”) and the modified method outlined above (denoted “without internal fluid”).
As Fig. 1 shows, for the simulations using the original algorithm the inertial contribution at
low frequencies is clearly visible. Just as Ladd concluded [2], at low frequencies the particle
behaves like a solid sphere with a moment of inertia equal to that of the shell plus that of
the equivalent volume of fluid. In contrast, using the modified method we described above,
there is no additional inertial contribution. The data follow the theoretical curve for a solid
object with a moment of inertia simply equal to the assigned moment of inertiaIo. Thus,
from the point of view of rotation, the method we outlined above succeeds in its objective
of removing the low-frequency effects of the internal fluid.

3.2. The Single-Particle Velocity Autocorrelation Function

We now turn to translational motion, where, this time, we will consider a more physical
quantity, the velocity autocorrelation function (VACF). In a suspension a colloidal particle
experiences rapid collisions with the solvent molecule, giving it a fluctuating thermal ve-
locity. The VACF,C(t), is defined as an average over these fluctuationsC(t) = 〈v(0)v(t)〉,
wherev(t) is one component of the instantaneous thermal velocity. It characterizes the
decay of velocity fluctuations. In our lattice-Boltzmann model we have no spontaneous
fluctuations. However, if we impose a velocity fluctuation then, according to Onsager’s
regression hypothesis, the subsequent decay will be identical to the average decay in a real
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system. To analyze the dissipation of an imposed velocity fluctuation, in the same way
that we defined a rotational friction coefficient above, we define a translational frequency-
dependent friction coefficientγt(Ä). The translational friction coefficient characterizes the
force acting on a particle undergoing simple periodic translational motion with frequencyÄ.
Since the functionγt(Ä) connects the velocity to its derivative, it can be used to define an
equation of motion for the particle. In terms of Fourier components, the velocity of the
particle satisfies the equation

v(Ä) = Fx(Ä)/mo

−iÄ+ γt(Ä)/mo
, (16)

whereFx(Ä) is the Fourier transform of any time-dependent external forces acting on the
particle. If we now consider a particle impulsively accelerated to a velocityvo at t = 0, i.e.,
Fx(Ä) = mov0, then

v(Ä)

v0
= 1

−iÄ+ γt(Ä)/mo
. (17)

Following from the discussion above, this can be related to the Fourier transform of the
“true” VACF,

v(Ä)

v0
= C(Ä)

C(t = 0)
= moC(Ä)

kBT
, (18)

whereT is the temperature andkB is Boltzmann’s constant. We have also used the equipar-
tition condition to identifyC(t = 0) = kBT/mo. So, if we knowγt(Ä) then, with the aid of
Eq. (17), Eq. (18), and an inverse transformation, we can calculate the velocity autocorrela-
tion function. For a single spherical particleγt(Ä) can be calculated analytically. Assuming
that the motion of the fluid is described by the compressible Navier–Stokes equations and
that a stick boundary condition applies at the solid/fluid interface, this calculation yields [13,
14]

γt(Ä) = 2γt(0)α
2 (1+ α + (1/9)α2)B− (1/9)β2A

β2A+ 2α2B
, (19)

with

A = 1+ α + 1

3
α2

B = 1+ β + 1

3
β

(20)
α = −ia

√
Ä/ν

β = iaÄ√
(c2− iÄ((4/3)ν + νB))

Here γt(0) = 6πηa is the zero-frequency translational friction coefficient,νB = ηB/ρ,
whereηB is the bulk viscosity, andc is the speed of sound through the fluid. The latter
two quantities are associated with, respectively, the speed and the rate of damping of the
sound wave generated by a moving particle. Comparisons have been made between theoret-
ical and numerical values, calculated using the lattice-Boltzmann model [2], for the VACF
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of a single spherical colloidal particle. However, the comparison was made against theory
derived using the additional assumption that the fluid is incompressible (the compressible
result, Eq. (19), reduces to the incompressible result in the limitβ → 0, i.e., the speed of
sound going to infinity). The lattice-Boltzmann approach simulates a compressible system;
the sound propagates through the model fluid at a finite speed. Although the effects of
compressibility are limited to high frequencies,Ä ∼ c/a [14], a comparison with the full
compressible result, notably at short times, is more appropriate.

Numerically, we have calculated the normalized velocity autocorrelation function along
the lines outlined above (Eq. (18)). Starting with a fluid at rest and a spherical particle with
a velocityv0, we allowed the system to evolve in time and, from the subsequent velocity of
the particle,v(t), we calculated the normalized velocity autocorrelation functionv(t)/v0.
We performed the same procedure for particle radii of 2.5 and 4.5 lattice sites using a cubic
system with periodic boundary conditions applied at the faces of the simulation box. We
only calculated the VACF up until times less than the time it takes a sound wave to pass
between the central particle and its nearest periodic image. Thus, the results are free from
any finite size effects. In Fig. 2 we have plotted the normalized velocity autocorrelation
function as a function of the viscous timeτν = tν/a2 calculated using the original method
and using the modified method outlined above. For the results plotted in Fig. 2 the radius
of the solid particle was 2.5 lattice sites. Also plotted in Fig. 2 is the theoretical result
for a compressible fluid, calculated by substituting appropriate values for the transport
coefficients into Eq. (19) and transforming the frequency-dependent VACF into the time
domain. In lattice units, such that the time step, density of the fluid, and lattice spacing are
all unity, the values of the transport coefficients wereν = 1/6, c = 1/

√
2, andνB = 1/30.

In Fig. 3 we show the same plot for data obtained using the identical fluid, but this time using
a sphere of radius 4.5 lattice sites. Examining Fig. 2 we see that the VACF calculated with

FIG. 2. The normalized velocity autocorrelation function for a single colloidal sphere as a function of di-
mensionless timeτν = tν/a2. τs is the time, measured in the same reduced units, it takes a sound wave to travel a
particle diameter. The simulation used a particle of radius 2.5 lattice sites.
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FIG. 3. The normalized velocity autocorrelation function for a single colloidal sphere as a function of di-
mensionless timeτν = tν/a2. τs is the time, measured in the same reduced units, it takes a sound wave to travel a
particle diameter. The simulation used a particle of radius 4.5 lattice sites.

the effects of the internal fluid removed (“without internal fluid”) follows the theoretical
curve and more closely than does the curve calculated using the original method. With
the internal fluid present, the VACF lies initially below the theoretical curve and then
subsequently above it. It displays weak oscillations about the true result. This is almost
certainly an effect of sound propagating back and forth inside the object. To support this
hypothesis, the time it takes a sound wave to travel one particle diameter is also shown in
the plot (τs). As we can see, it corresponds to an artificial maximum in the VACF. Turning
to the plot for the sphere of radius 4.5 lattice units (Fig. 3), we see that the oscillations about
the correct result, for the simulation with internal fluid, are now, compared to the radius 2.5
case, more pronounced. Again the first artificial maximum occurs at a time commensurate
with a sound wave travelling one diameter through the fluid (τs). This is consistent with
our remark that these oscillations are an artifact of sound propagation through the internal
fluid. Given that we are using a bigger representation of the sphere we should get a more
accurate answer. The spatial resolution of the simulation has been increased. However, the
artificial oscillations we observe are more pronounced. At short times we are further away
from the true result. The reason for this is that, by moving from a sphere of radius 2.5 to 4.5,
we have, in dimensionless terms decreased the compressibility. Sound waves are dissipated
proportionately more slowly, making the problem worse. In contrast, for the simulation
where we have attempted to remove the effects of the internal fluid, increasing the radius
of the sphere gives a result nearer to the theoretical curve. This is the behaviour we would
expect for a truly solid particle. On the whole, the agreement between the theoretical result
and the simulations with the effects of the internal fluid removed is very good, particularly
given the extremely rapid initial decay of the function relative to one time step. At longer
times, after the oscillations induced by the internal fluid have died away, Figs. 2 and 3
suggest that either method is adequate. However, on closer examination we find that this
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FIG. 4. Log–log plot of the normalized velocity autocorrelation function at longer dimensionless times,
τν = tν/a2. The simulation used a particle of radius 2.5 lattice sites.

is not true. In Fig. 4 we have plotted, in log–log form, the decay of the VACF at longer
times for a particle of radius 2.5. It is clear that, with the internal fluid present, the results
follow the theoretical curve for a particle with mass ratioρ∗ = 2. Again, as with rotation,
the internal fluid is contributing, at low frequencies (or in this case long times), a rigid-body
inertial term to the equations of motion. In contrast, if we use the approach outlined above,
the results follow the (correct) curve for a neutrally buoyant particle. Again our method
seems to successfully reproduce the dynamics of a solid particle.

3.3. The Viscosity of a Concentrated Suspension

Whereas for generalized rotational and translational motion, considered above, the inter-
nal fluid causes a relatively minor perturbation of the dynamics of the particle, we now turn
to what may be a more serious problem: the influence this may, in turn, have on the transport
coefficients. Specifically, we consider the viscosity of a concentrated suspension. There are
various ways to calculate this quantity. Probably the most convenient is by studying the de-
cay of an initial transverse sinusoidal velocity perturbation [15]vi x (0) = sin(kriy), where
vi x (0) is the x component of the velocity of particlei andriy is the y component of its
position vector. If we calculate the subsequent velocity,vi x (t), of the N particles in the
system, then according to classic hydrodynamics [16] we have

Cν(t) = 1

N

〈
N∑

i=1

vi x (0)vi x (t)

〉
= 1

N

(
N∑

i=1

v2
i x (0)

)
exp(−k2νφ t), (21)

where the angular brackets denote an average over all possible configurations of theN
particles andνφ is the kinematic viscosity of the suspension. We only expect Eq. (21) to
apply on length scales long compared to the length scale defined by the particles themselves,
i.e., k¿ 2π/a. The decay of this correlation function has been reported elsewhere [15];



SIMULATING SOLID COLLOIDAL PARTICLES 59

here it is sufficient to note that the small-k asymptotic behaviour is observed, to a very
good approximation, as long aska< 0.1. The point is that this method gives us a means
of determining the kinematic viscosity of the suspension. This is related to the suspension
viscosity,ηφ , by ηφ = ρνφ , as long as we know the density. But what should we take for
the density? If the particles are neutrally buoyant the density of a suspension, regardless of
the volume fraction, will be equal to the density of the solvent, so that

νφ

ν
= ηφ

η
. (22)

If, however, we set the shell mass so that the particles are nominally neutrally buoyant but the
internal fluid contributes an equivalent mass (that is, assuming that it is the low-frequency
particle mass that is relevant) then the density of the suspensionρφ , at volume fractionφ,
will effectively differ from the solvent density asρφ = (1+ φ)ρ. This being the case, we
then expect

ηφ

η
= (1+ φ)νφ

ν
. (23)

Using the methodology outlined above (described in more detail in Ref. [15]), we have
calculated the kinematic viscosity of a suspension of hard spheres as a function of volume
fraction. In Fig. 5 we have plottedνφ/ν as a function of volume fraction for nominally
neutrally buoyant particles, simulated using Ladd’s original method (“with internal fluid”)
and using the modified method we outlined above (“without internal fluid”). Also plotted in
Fig. 5 are theoretical predictions (based on an expansion up to second order in the volume

FIG. 5. The kinematic viscosity of a suspension of hard spheres,νφ , normalized by the solvent viscosityν and
plotted as a function of volume fractionφ. Data denoted “Numerical” refer to values derived from shear viscosities
calculated by Ladd [12] and data denoted “Theory” refers to values derived from shear viscosities predicted by
the theory of Beenakker and Mazur [17].ρφ is the density we used to calculate the kinematic viscosity from the
shear viscosity andρ is the solvent density.
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fraction [17]) for the kinematic viscosity of a suspension of neutrally buoyant particles and
accurate numerical values calculated by Ladd [12]. As we see from the figure, whereas
data calculated using the modified method agree with theoretical and numerical values for
a suspension of neutrally buoyant particles, data calculated using the original method do
not. The data clearly follow the curveνφ/ν = ηφ/(1+ φ)η. The internal fluid is therefore
contributing to the effective density of the suspension (Eq. (23)) and the kinematic viscosity
is increasingly underestimated with increasing volume fraction.

4. DISCUSSION

We have described a method for simulating truly solid colloidal particles within the
lattice-Boltzmann framework. Unlike other methods that have been proposed, our method
strictly adheres to the microscopic conservation laws for mass and momentum. For compu-
tational convenience our approach keeps the internal fluid inherent in Ladd’s original model.
However, by transferring linear and angular momentum that would otherwise have been
transported to the internal fluid back to the shell of the particle, we recover the dynamics
of a truly solid particle. We demonstrated this by showing that the correct time-dependent
rotational and translation dynamics of a solid particle were recovered. To our knowledge,
the theoretical result for the VACF of a colloidal particle suspended in a compressible
fluid has not been tested before. Thus, our simulations could equally well be regarded as a
test of the theory rather than vice versa. Either way, the agreement was excellent. For the
simulations where the internal fluid reacted passively, we reached the same conclusion as
Ladd. At low frequencies, or long times, the internal fluid contributes an additional rigid-
body inertia to the motion of the particles. By considering the viscosity of a concentrated
suspension, we showed that this additional inertia leads to a suspension with an effective
density greater than one would expect for a suspension of colloidal particles with the same
density of the fluid. This means that the kinematic viscosity and viscosity do not display
the same dependence on volume fraction. Using our modified method, the correct equiva-
lence was recovered.
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